NELSON SENIOR MATHS METHODS 12 FULLY WORKED SOLUTIONS

Chapter 5 Binomial distributions Exercise 5.01 The Bernoulli distribution

Concepts and techniques

b, c and e each have two outcomes, one of which can be considered as a success and has a fixed probability
 E 1-3/30 = 27/30 = 9/10
 E 2/5, p = 1/5, q = 4/5 and σ = √p(1-p) = √(1/5)×(4/5) = 2/5

- **b** No, as there are more than two possible outcomes
- **c** No, as there are more than two possible outcomes.
- **d** Yes, as there are two possible outcomes.
- e Yes, as there are two possible outcomes.
- **f** No, as there are more than two possible outcomes.
- **g** No, as there are more than two possible outcomes.
- 5 a P(a red onion) = 0.5

b
$$P(a \text{ six}) = \frac{1}{8}$$

c
$$P(a \text{ sherbet}) = \frac{1}{4}$$

6 a
$$p = \frac{2}{5}, q = \frac{3}{5}, n = 1$$
 Variance $= \sigma^2 = pq = \frac{6}{25}$
b $q = \frac{1}{3}, p = \frac{2}{3}, n = 1$ Variance $= \sigma^2 = pq = \frac{2}{9}$
c $p = 0.6, q = 0.4, n = 1$ Variance $= \sigma^2 = pq = 0.24$
d $q = 0.3, p = 0.7, n = 1$ Variance $= \sigma^2 = pq = 0.21$
e $p = \frac{3}{4}, q = \frac{1}{4}, n = 1$ Variance $= \sigma^2 = pq = \frac{3}{16}$
7 a $q = 0.4, p = 0.6, n = 1$ Standard deviation $= \sigma = \sqrt{pq} = \sqrt{0.24} = 0.49$
b $p = \frac{2}{3}, q = \frac{1}{3}, n = 1$ Standard deviation $= \sigma = \sqrt{pq} = \sqrt{\frac{2}{9}} = \frac{\sqrt{2}}{3}$
c $q = \frac{24}{25}, p = \frac{1}{25}, n = 1$ Standard deviation $= \sigma = \sqrt{pq} = \sqrt{\frac{24}{625}} = \frac{2\sqrt{6}}{25}$
d $p = 0.2, q = 0.8, n = 1$ Standard deviation $= \sigma = \sqrt{pq} = \sqrt{0.16} = 0.4$
e $p = \frac{7}{9}, q = \frac{2}{9}, n = 1$ Standard deviation $= \sigma = \sqrt{pq} = \sqrt{\frac{14}{81}} = \frac{\sqrt{14}}{9}$

Reasoning and communication

8
$$P(x=0) = \frac{23}{25} \times \frac{23}{25} \times \frac{23}{25} \times \frac{23}{25} \times \frac{23}{25} = \frac{6\,436\,343}{9\,765\,625} \approx 0.659\,082$$

or $P(x=0) = \frac{{}^{92}C_5}{{}^{100}C_5} = 0.65908$

9 Two red, three green and one blue marble.

$$P(a \text{ red marble}) = \frac{1}{3}.$$

Standard deviation = $\sigma = \sqrt{pq} = \sqrt{\frac{1}{3} \times \frac{2}{3}} = \frac{\sqrt{2}}{3}$

10
$$P(\text{ace}) = \frac{4}{52} = \frac{1}{13}.$$

 $p = \frac{1}{13}, \ q = \frac{12}{13}$ Variance $= \sigma^2 = pq = \frac{12}{169}$

11
$$P(x=0) = 0.8 \times 0.8 \times 0.8 \times 0.8 \times 0.8 = 0.8^5 = 0.32768$$

200 = 20 misshaped + 180 normal

$$P(\text{at most 1}) = P(x=0) + P(x=1)$$

= $\frac{{}^{20}C_0 \times {}^{180}C_{10}}{{}^{200}C_{10}} + \frac{{}^{20}C_1 \times {}^{180}C_9}{{}^{200}C_{10}}$
 $\approx \frac{1 \times 7.63 \times 10^{15}}{2.245 \times 10^{16}} + \frac{20 \times 4.4609 \times 10^{14}}{2.245 \times 10^{16}}$
= 0.339 77 + 0.397 40
 $\approx 0.737 17$

Exercise 5.02 The geometric distribution

Concepts and techniques

1	D	'the number of digits I read beginning at a randomly selected point in a table of
		random digits until I find a 9'
		This is failure, failure,, failure, success.
2	В	because $(0.2)^4(0.8) = 0.001\ 28$
3	D	$0.0723, P(X = 4) = (0.7)^4 (0.3) = 0.07203$
4	В	P(X > 3) = 1 - P(X = 0) - P(X = 1) - P(X = 2) - P(X = 3)
		$= 1 - [0.8 + 0.2 \times 0.8 + (0.2)^2 \times 0.8 + (0.2)^3 \times 0.8]$
		= 0.0016
5	А	$E(X) = \frac{1-p}{p} = \frac{1-0.8}{0.8} = 0.25$
6	a	Yes, as failure, failure, success with the same probabilities.
	b	No, as the probabilities do not stay the same.
	c	Yes, as a sequence of $q, q,, q, p$ with the same probabilities.
	d	Yes, as a sequence of B, B,, B, G with the same probabilities.
	e	Yes, as a sequence of N, N,, N, Y with the same probabilities.
7	P(exac	etly six rolls are required) = $\left(\frac{4}{6}\right)^5 \left(\frac{2}{6}\right) = 0.0439$
8	<i>P</i> (H) -	$-P(MH) + P(MMH) = \frac{1}{3} + \frac{2}{3} \times \frac{1}{3} + \frac{2}{3} \times \frac{2}{3} \times \frac{1}{3} = \frac{9+6+4}{27} = \frac{19}{27} = 0.704$
9	a	$P(X=5) = 0.8^5 \times 0.2 = 0.0655$
	b	$P(X \le 5) = 0.2 + 0.8^{1} \times 0.2 + 0.8^{2} \times 0.2 + 0.8^{3} \times 0.2 + 0.8^{4} \times 0.2 + 0.8^{5} \times 0.2$
		$= 0.2(1 + 0.8 + 0.8^2 + 0.8^3 + 0.8^4 + 0.8^5)$
		= 0.738
	с	$E(\mathbf{X}) = \frac{1-p}{p} = \frac{1-0.2}{0.2} = 4$

10 $P(\text{underweight}) = \frac{3}{4}$

a
$$P(X \ge 1) = 1 - P(X = 0) = 1 - \frac{1}{4} = \frac{3}{4}$$

b $P(1 \le X \le 5) = P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5)$
 $= \frac{3}{4} \times \frac{1}{4} + \left(\frac{3}{4}\right)^2 \times \frac{1}{4} + \left(\frac{3}{4}\right)^3 \times \frac{1}{4} + \left(\frac{3}{4}\right)^4 \times \frac{1}{4} + \left(\frac{3}{4}\right)^5 \times \frac{1}{4}$
 $= \frac{3}{4} \times \frac{1}{4} \left[1 + \frac{3}{4} + \left(\frac{3}{4}\right)^2 + \left(\frac{3}{4}\right)^3 + \left(\frac{3}{4}\right)^4 \right] = 0.572$

11
$$P(\text{hit his drive straight}) = 0.1$$

a
$$P(4 \le X \le 14) = (0.9)^4 (0.1) + (0.9)^5 (0.1) + ... + (0.9)^{14} (0.1)$$

= $(0.9)^4 (0.1) \{1 + 0.9 + 0.9^2 + ... + (0.9)^{10}\}$

(Note: Geometric series)

$$= (0.9)^4 (0.1) \{ 6.861 \ 894 \}$$
$$= 0.45$$
$$E(X) = \frac{1-p}{p} = \frac{1-0.1}{0.1} = 9$$

12 P(correct) = 0.1

b

Y denotes the number of questions answered for the first correct answer.

a
$$P(Y=7) = (0.9)^6 (0.1) = 0.0531$$

b $P(2 \le Y \le 8) = (0.9)(0.1) + (0.9)^2 (0.1) + (0.9)^3 (0.1) + (0.9)^4 (0.1) + (0.9)^5 (0.1) + (0.9)^6 (0.1) + (0.9)^7 (0.1)$
 $= (0.9)(0.1)\{1 + (0.9)^1 + (0.9)^2 + (0.9)^3 + (0.9)^4 + (0.9)^5 + (0.9)^6\}$
 $P(2 \le Y \le 8) = 0.4695$

Reasoning and communication

13 P(even) = 0.5a $P(\text{exactly } 2) = 0.5 \times 0.5 = 0.25$ b $P(\text{at least } 2) = P(X \ge 2) = 1 - P(X = 0) - P(X = 1)$ = 1 - 0.5 - 0.25 = 0.25c P(no more than 2) = P(X = 0) + P(X = 1) + P(X = 2) $= 0.5 + 0.5 \times 0.5 + 0.5 \times 0.5 \times 0.5$ = 0.87514 $P(\text{sinks putt}) = \frac{3}{4}$

$$P(qqqqp) = \left(\frac{1}{4}\right)^4 \times \frac{3}{4} = 0.00293$$

- 15 P(speed) = 0.1 $P(qqqqqp) = (0.9)^5 \times 0.1 = 0.059$
- **16** *P*(fraud) = 0.25

a
$$P(qqqqq) = 0.75^5 = 0.237$$

b
$$E(X) = \frac{1-p}{p} = \frac{1-0.25}{0.25} = 3$$

i.e., you would get away with two and the third one would be expected to be detected.

17 P(job) = 0.75

 $P(qqqp) = (0.25)^3 0.75 \approx 0.0117$

Exercise 5.03 The binomial distribution

Concepts and techniques

- 1 D 'the number of 9s in a randomly selected set of 10 digits from a table of random digits' is binomial as you know how many are 9s and how many are not 9s.
- **2** B The binomial distribution with n = 6 and p = 0.5.

3 E
$$4(\frac{5}{6})^3(\frac{1}{6})^1$$
 as ${}^4C_3 = 4$ and we want 3 successes $\frac{5}{6}$, and one failure $\frac{1}{6}$.

4 **b**, **c**, **e** and **g** as there are a fixed number of Bernoulli trials with the same probabilities of success

5 a
$$\binom{6}{4}(0.7)^4(0.3)^2 = 0.3241$$

b $\binom{9}{3}(0.38)^3(0.62)^6 = 0.2618$
c $\binom{5}{2}\left(\frac{1}{5}\right)^2\left(\frac{4}{5}\right)^3 = 0.2048$
d $\binom{8}{7}(0.25)^7(0.75)^1 = 0.0004$
e $\binom{10}{0}(0.09)^0(0.91)^{10} = 0.3894$
6 a $\binom{10}{2}(0.5)^2(0.5)^8$ $p = 0.5, q = 0.5, n = 10, x = 2$
b $\binom{20}{0}(0.85)^{20}$ $p = 0.15, q = 0.85, n = 20, x = 0$
c $\binom{15}{12}\left(\frac{3}{5}\right)^{12}\left(\frac{2}{5}\right)^3$ $p = \frac{3}{5}, q = \frac{2}{5}, n = 15, x = 12$
d $\binom{9}{8}(0.11)^8(0.89)$ $p = 0.11, q = 0.89, n = 9, x = 8$
e $\binom{7}{4}(0.25)^4(0.75)^3$ $p = 0.25, q = 0.75, n = 7, x = 4$

7
$$P(X = x) = {\binom{7}{x}} (0.8)^{x} (0.2)^{7-x}.$$

a The number of trials = 7

- **b** The probability of success in any trial is 0.8
- С

x	0	1	2	3	4	5	6	7
P(X=x)	0.0000	0.0004	0.0043	0.0287	0.1147	0.2753	0.3670	0.2097

8
$$P(Z=z) = {7 \choose z} (0.15)^{z} (0.85)^{7-z}.$$

- **a** The number of trials is 7.
- **b** The probability of success in any trial is 0.15.

c	z	0	1	2	3	4	5	6	7
	P(Z=z)	0.3206	0.3960	0.2097	0.0617	0.0109	0.0012	0.0001	0.0000

9
$$n = 7, x = 3, p = \frac{1}{6}, q = \frac{5}{6}$$

 $P(X = 3) = {}^{7}C_{3}\left(\frac{1}{6}\right)^{3}\left(\frac{5}{6}\right)^{4} = 0.0781$

Reasoning and communication

10 The value of p in question 7 is much higher than the value of p in question 8 and the probabilities of more successes in question 7 are much higher than the corresponding probabilities in question 8. Similarly, the probabilities of more failures in question 7 are much lower than the corresponding probabilities in question 8.

Exercise 5.04 Using the binomial distribution

Concepts and techniques

1 D
$$P(X = 5) = {}^{6}C_{5} \left(\frac{5}{6}\right)^{5} \left(\frac{1}{6}\right)^{1} = 0.401\ 877$$

2 B Binomial probability distribution with $n = 7$ and $p = \frac{2}{5}$.
 $P(X \text{ is at least } 6) = P(X = 6) + P(X = 7)$
 $= 0.0172 + 0.0016$
 $= 0.0188$
3 D $p = 0.4, n = 5, P(\text{at most one}) = P(X = 0) + P(X = 1)$
 $= 0.0778 + 0.2592$
 $= 0.337$
4 D $n = 8, p = \frac{1}{3}, P(X \ge 1) = 1 - P(X = 0) = 1 - 0.039 = 0.9610$
5 B $n = 10, p = 0.75, P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2)$
 $= 0.000\ 0010 + 0.000\ 0286 + 0.000\ 3862$

6
$$n = 7, p = 0.4$$

a
$$P(X=3) = 0.2903$$

- **b** $P(X \text{ is at least } 3) = P(X = 3) + P(X = 4) + \dots + P(X = 7) = 1 0.419904 = 0.5801$
- c $P(X \text{ is more than } 5) = P(X = 6) + P(X = 7) = 1 0.998 \ 115 \ 84 = 0.018 \ 8416$

↓ 1.1 ►	*Unsaved 🗢	(1)
binomPdf(11,0.	82,7)	0.086358
binomCdf(11,0	.82,3,6)	0.033379
binomCdf(11,0	.82,0,3)	0.000108
1-binomCdf(11	,0.82,0,7)	0.880256

ClassPad

Edit Action Interactive	\times
$ \begin{array}{c} \begin{array}{c} 0.5 \\ 1 \\ 1 \\ 2 \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \right) $	Þ
binomialPDf(7,11,0.82)	
0.08635767214	
binomialCDf(3,6,11,0.82)	
0.03337855053	
binomialCDf(0,3,11,0.82)	
1.07919091E-4	
1-binomialCDf(0,7,11,0.82)	
0.8802561131	

n = 11, p = 0.82

a P(X = 7) = 0.0864

b
$$P(3 \le X \le 6) = P(X \le 6) - P(X \le 2) = 0.033\ 386 - 0.000\ 008 = 0.033\ 386$$

- c $P(X \le 3) = 0.000 \ 1079$
- **d** $P(X > 7) = 1 P(X \le 7) = 1 0.119744 = 0.8803$

रे 1.1 ▶	*Unsaved 🗢	, (<mark>1</mark> 🗙
binomPdf(15,0	0.27,11)	0.000215
1-binomCdf(1	.5,0.27,0,4)	0.381003
1-binomCdf(1	.5,0.27,0,8)	0.007302
binomCdf(15,0	0.27,3,8)	0.806389

ClassPad

Edit Action Interactive	\mathbf{X}
$\begin{array}{c c} 0.5 \\ 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	Þ
binomialPDf(11,15,0.27)	
2.154891944E-4	
1-binomialCDf(0,4,15,0.27)	
0.3810027423	
1-binomialCDf(0,8,15,0.27)	
7.30204791E-3	
binomialCDf(3,8,15,0.27)	
0.8063887148	

n = 15, p = 0.27

- **a** P(X = 11) = 0.0002
- **b** $P(X \ge 5) = 1 P(X \le 4) = 1 0.618998 = 0.381$
- c $P(X \ge 9) = 1 P(X \le 8) = 0.0073$
- **d** $P(2 < X < 9) = P(X \le 8) P(X \le 2) = 0.9927 0.1863 = 0.8064$

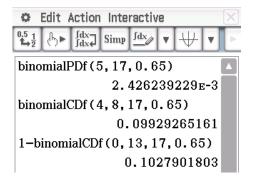
₹ 1.1 ►	*Unsaved 🗢	K (×
binomPdf(25,0.7	25, 15)	0.06498	
binomCdf(25,0.7	25,5,15)	0.1216	
1-binomCdf(25,0	0.725,0,13)	0.97699	
binomCdf(25,0.7	25,0,9)	0.00015	

ClassPad

Edit Action Interactive
 ► Edit Action Interactive
 ► fdx
 Simp fdx
 Imp fdx
 Imp

n = 25, p = 0.725

- **a** P(X = 15) = 0.0650
- **b** $P(5 \le X \le 15) = P(X \le 15) P(X \le 4) = 0.1216$
- c $P(X \ge 14) = 1 P(X \le 13) = 0.9770$


d
$$P(X < 10) = P(X \le 9) = 0.0001$$

10 n = 8, p = 0.4

- **a** P(2 successes occur) = 0.2090
- **b** P(5 successes occur) = 0.1239
- **c** $P(\text{at least 2 successes occur}) = P(X \ge 2) = 1 P(X \le 1) = 0.8936$

▲ 1.1 ▶	*Unsaved 🗢	XII (×
binomPdf(17,0.65,5	;)	0.002426	
binomCdf(17,0.65,4	1,8)	0.099293	
1-binomCdf(17,0.6	5,0,13)	0.10279	

ClassPad

n = 17, p = 0.65

a
$$P(X = 5) = 0.0024$$

b
$$P(4 \le X \le 8) = P(X \le 8) - P(X \le 3) = 0.0993$$

c
$$P(X \ge 14) = 1 - P(X \le 13) = 0.1028$$

Reasoning and communication

12
$$n = 6, p = 0.5$$

a $P(X = x) = 0.3125$
 $= {}^{6}C_{x} (0.5)^{x} (0.5)^{6-x}$
 $x = 3$
b $P(X = x) = 0.09375$
 $x = 1, 5$
c $P(X = x) = 0.234375$
 $x = 2, 4$
13 $n = 5, q = 0.5$

a
$$P(X < x) = 0.1875$$

 $x = 2 \text{ as } P(X \le 1) = 0.1875$

b
$$P(X \ge x) = 0.1875$$

 $P(X \le x - 1) = 0.8125$
 $x - 1 = 3$, so $x = 4$

c
$$P(X > x) = 0.5$$

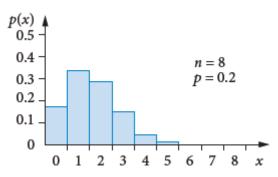
 $P(X \le x) = 0.5$
 $x = 2$

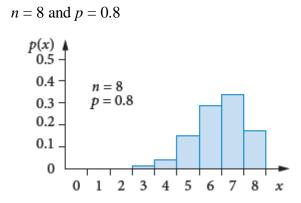
Exercise 5.05 Properties of the binomial distribution

Concepts and techniques

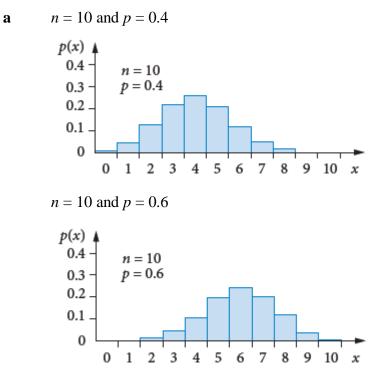
- as clustered around 0.3 p(x)
- **2** D n = 32 and $p = \frac{1}{4}$

$$\mu = np = 8, \, \sigma^2 = npq = 6$$


3

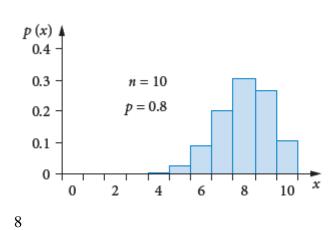

a

1

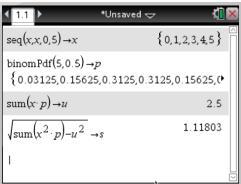

С

n = 8 and p = 0.2

b The graphs are mirror images of each other, skewed positively and negatively respectively.



b The graphs are mirror images of each other, skewed positively and negatively respectively.


a

4

b

© Cengage Learning Australia 2014 ISBN 9780170254663

ClassPad

n = 5 and p = 0.5a

x	0	1	2	3	4	5	S	Sums
P(X = x)	0.0313	0.1563	0.3125	0.3125	0.1563	0.0313	1	.0002
$x \times P(X = x)$	0	0.1563	0.625	0.9375	0.6252	0.1565	2	.5005
$x^2 \times P(X=x)$	0	0.1563	1.25	2.8125	2.5008	0.7825	7	.5021

$$\mu = E(X) = 0 \times 0.0313 + 1 \times 0.1563 + 2 \times 0.3125 + 3 \times 0.3125$$

 $+ 4 \times 0.1563 + 5 \times 0.0313 = 2.5005$

$$E(X^2) = 0^2 \times 0.0313 + 1^2 \times 0.1563 + 2^2 \times 0.3125 + 3^2 \times 0.3125$$

 $+4^2 \times 0.1563 + 5^2 \times 0.0313 = 7.5021$

$$\sigma_x^2 = E(X^2) - \mu^2$$

$$\sigma_x^2 = 7.5021 - 2.5005^2$$

$$= 1.2496$$

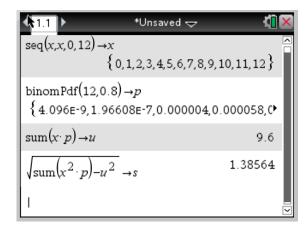
$$\sigma_x \approx 1.118$$

$$\mu = np = 5 \times 0.5 = 2.5$$

$$\sigma = \sqrt{npq} = \sqrt{5 \times 0.5 \times 0.5} = 1.118$$

b

TI-Nspire CAS


∢ 1.1 ▶	*Unsaved 🗢	K 🚺 🗙
$seq(x,x,0,8) \rightarrow x$	{ 0, 1, 2, 3, 4	£,5,6,7,8}
binomPdf(8,0.3)→ {0.057648,0.197	-	4122,0.1►
$\operatorname{sum}(x \cdot p) \to u$		2.4
$\sqrt{\operatorname{sum}(x^2 \cdot p) - u^2}$ -	→S	1.29615
L		

🗢 Edit Action Interactive 🖂	🗢 Edit Calc Se		Stat Calculation 🛛 🔀
$ \overset{0.5}{\rightarrowtail_2} \overset{1}{} \overset{1}{} \overset{1}{\swarrow} \overset{1}{\swarrow} \overset{1}{\swarrow} \overset{1}{\swarrow} \overset{1}{\swarrow} \overset{1}{\checkmark} \overset{1}{} \overset{1}{\checkmark} \overset{1}{} $		3.141 III: III	One-Variable
$seq(x, x, 0, 8, 1) \Rightarrow list1$		list2 list3	
{0, 1, 2, 3, 4, 5, 6, 7, 8}	1 0 2 1	0.0576 0.1977	$\bar{\mathbf{x}}$ =2.4 $\Sigma \mathbf{x}$ =2.4 $\Sigma \mathbf{x}^2$ =7.44
binomialPDf(list1,8,0.3)⇒list2	32	0.2965	$\Sigma_{x^2}^{2x^2} = 7.44$
{0.05764801,0.19765032,0	54	0.1361	$\sigma_{\rm X}$ =1.2961481
	65	0.0467	$\begin{vmatrix} s_x & = \\ n & =1 \end{vmatrix}$
	87	1.2E-3	$\min_{\Omega_{t}} X = 0$
	9 8 10	6.6E-5	$Q_1 = Med = $
	11		
	12 13		OK

n = 8 and p = 0.3

x	0	1	2	3	4	5	6	7	8	Sums
P(X = x)	0.0576	0.1977	0.2965	0.2541	0.1361	0.0467	0.01	0.0012	0.0001	1
$x \times P(X=x)$	0	0.1977	0.593	0.7623	0.5444	0.2335	0.06	0.0084	0.0005	2.3998
$x^2 \times P(X=x)$	0	0.1977	1.186	2.2869	2.1776	1.1675	0.36	0.0588	0.0025	7.437

 $\mu = E(X) = 2.3998$ $E(X^{2}) = 7.437$ $\sigma_{x}^{2} = E(X^{2}) - \mu^{2}$ $\sigma_{x}^{2} = 7.437 - 2.3998^{2}$ = 1.68 $\sigma_{x} \approx 1.296$ $\mu = np = 8 \times 0.3 = 2.4$ $\sigma = \sqrt{npq} = \sqrt{8 \times 0.3 \times 0.7} = 1.296$

ClassPad

🜣 Edit Action Interactive 🖂	🗢 Edit Calc SetGraph 🔶 🖂	
$\stackrel{0.5}{\overset{1}{\rightarrowtail}_{2}} \stackrel{1}{} \models \stackrel{fdx}{\overset{fdx}{\dashv}_{x}} \operatorname{Simp} \stackrel{fdx}{\overset{fdx}{\checkmark}} \checkmark \stackrel{\Psi}{\overset{\Psi}} \stackrel{\Psi}{\overset{\Psi}} \models$	Y1:··· √α 7.3.	×
$seq(x, x, 0, 12, 1) \Rightarrow list1$	list1 list2 list3 One-Variable 1 0 4.1E-9 0 0	
{0,1,2,3,4,5,6,7,8,9,10,	$\begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 3 \\ 5 \end{bmatrix} \begin{bmatrix} 2 \\ -7 \\ -8 \end{bmatrix} \begin{bmatrix} 2 \\ -7 \\ -7 \end{bmatrix} \begin{bmatrix} 2 \\ -7 \\ -$	
binomialPDf(list1, 12, 0.8)⇒list2	$4 _{3}$ 5.8E-5 $ _{\Sigma_{12}}^{\Sigma_{12}} = 9.6$	
4 13, 0. 2834678415, 0. 2061{	$\sigma_{x} = 1.3856406$	
	7 6 0.0155 Sx =1	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	10 0.2835 12 11 0.2062	

n = 12 and p = 0.8

x	0	1	2	3	4	5	6
P(X = x)	0	0	0	0	0	0.0033	0.0155
$x \times P(X=x)$	0	0	0	0	0	0.0165	0.093
$x^2 \times P(X=x)$	0	0	0	0	0	0.0825	0.558

7	8	9	10	11	12	Sums
0.0532	0.1329	0.2362	0.2835	0.2062	0.0687	0.9995
0.3724	1.0632	2.1258	2.835	2.2682	0.8244	9.5985
2.6068	8.5056	19.1322	28.35	24.9502	9.8928	94.0781

20

С

$$\mu = E(X) = 9.5985$$

$$E(X^{2}) = 94.0781$$

$$\sigma_{x}^{2} = E(X^{2}) - \mu^{2}$$

$$\sigma_{x}^{2} = 94.0781 - 9.5985^{2}$$

$$= 1.9469$$

$$\sigma_{x} \approx 1.39$$

$$\mu = np = 12 \times 0.8 = 9.6$$

$$\sigma = \sqrt{npq} = \sqrt{12 \times 0.8 \times 0.2} = 1.39$$

d

TI-Nspire CAS

< <u>1.1</u> ►	*Unsaved 🗢	(1) ×
$seq(x,x,0,9) \rightarrow x$	{ 0, 1, 2, 3, 4, 5	5,6,7,8,9 }
binomPdf(9,0.6) {0.000262,0.00	<i>→p</i>)3539,0.021234,0.0	74318,0.
$\operatorname{sum}(x \cdot p) \to u$		5.4
$\sqrt{\operatorname{sum}(x^2 \cdot p) - u^2}$	- → S	1.46969
1		

🗢 Edit Action Interactive 🛛 🖂	🜣 Edit Calc SetGraph 🔶 🖂	Stat Calculation
$\begin{array}{c c} 0.5 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	One-Variable
$seq(x, x, 0, 9, 1) \Rightarrow list1$	list1 list2 list3	li
{0,1,2,3,4,5,6,7,8,9}	1 0 2.6E-4 2 1 3.5E-3	$\bar{\mathbf{x}} = 5.4$ $\Sigma \mathbf{x} = 5.4$ $\Sigma \mathbf{x}^2 = 31.32$
binomialPDf(list1,9,0.6) \Rightarrow list2	3 2 0.0212	
{2.62144e-4,3.538944e-3,C	4 3 0.0743 5 4 0.1672	$\sigma_{\rm x} = 1.4696938$ $s_{\rm x} = 1674871.6$
	6 5 0.2508	n = 1 minX = 0
	7 6 0.2508	Q ₁ =
	87 98 0.0605	Med =
	10 9 0.0101	OK
	11	

n = 9 and p = 0.6

x	0	1	2	3	4	5	6	7	8	9	Sums
P(X = x)	0.0003	0.0035	0.0212	0.0743	0.1672	0.2508	0.2508	0.1612	0.0605	0.0101	0.9999
$x \times P(X = x)$	0	0.0035	0.0424	0.2229	0.6688	1.254	1.5048	1.1284	0.484	0.0909	5.3997
$x^2 \times P(X=x)$	0	0.0035	0.0848	0.6687	2.6752	6.27	9.0288	7.8988	3.872	0.8181	31.3199

$$\mu = E(X) = 5.4$$

$$E(X^{2}) = 31.32$$

$$\sigma_{x}^{2} = E(X^{2}) - \mu^{2}$$

$$\sigma_{x}^{2} = 31.32 - 5.4^{2}$$

$$= 2.16$$

$$\sigma_{x} \approx 1.47$$

$$\mu = np = 9 \times 0.6 = 5.4$$

$$\sigma = \sqrt{npq} = \sqrt{9 \times 0.6 \times 0.4} = 1.47$$

7

a
$$n = 7$$
 and $p = 0.1$
 $\mu = np = 7 \times 0.1 = 0.7$
 $\sigma = \sqrt{npq} = \sqrt{7 \times 0.1 \times 0.9} = 0.794$
b $n = 7$ and $p = 0.9$
 $\mu = np = 7 \times 0.9 = 6.3$
 $\sigma = \sqrt{npq} = \sqrt{7 \times 0.9 \times 0.1} = 0.794$
c $n = 20$ and $p = 0.65$
 $\mu = np = 20 \times 0.65 = 13$
 $\sigma = \sqrt{npq} = \sqrt{20 \times 0.65 \times 0.35} = 2.133$
d $n = 30$ and $p = 0.34$
 $\mu = np = 30 \times 0.34 = 10.2$
 $\sigma = \sqrt{npq} = \sqrt{30 \times 0.34 \times 0.66} = 2.59$

Reasoning and communication

8
$$n = 10, Var(X) = 0.9 = npq$$

 $0.9 = 10p(1-p)$
 $p = 0.1 \text{ or } p = 0.9$

9

A
$$\mu = np = 24, SD(X) = 3 = \sqrt{npq}$$

$$3 = \sqrt{24(1-p)}$$

9 = 24(1-p)
$$p = 0.625 = \frac{5}{8}$$

10

b
$$\mu = np = 60 \times \frac{4}{52} = \frac{60}{13} = 4.62$$

Expect about 5.

c About 95%.

11
$$\mu = 5, \sigma = 2$$

$$\mu = np = 5$$

$$2 = \sqrt{npq}$$

$$4 = 5q$$

$$q = 0.8, \ p = 0.2, \ n = \frac{5}{0.2} = 25$$

$$P(X = 5) = 0.196$$

12 $\mu = np = 200 \times 0.5 = 100$

13
$$p = 0.8, \mu = 500, n = ?$$

 $\mu = np$
 $500 = n \times 0.8$

$$n = 625$$

14 a
$$n = 420$$
 batteries, $\mu = np = 420 \times 0.4 = 168$

b
$$\sigma = \sqrt{npq} = \sqrt{420 \times 0.4 \times 0.6} = 10.04$$

Exercise 5.06 Applications of the binomial distribution

Concepts and techniques

1

TI-Nspire CAS

< <u>1.1</u> ▶	*Unsaved 🗢	<[] ×
binomPdf(3,0.25,3)	0.015625
binomPdf(3,0.25,0)	0.421875
1-binomCdf(3,0.2	5,0,1)	0.15625
1-bnomcar(3,0.2	5,0,1)	0.15025

ClassPad

$\begin{array}{c c} 0.5 \\ \hline 1 \\ \hline 2 \\ \hline 2 \\ \hline 1 \\ \hline 2 \\ \hline 2$				
0.015625 binomialPDf(0,3,0.25)				
binomialPDf(0,3,0.25)				
0.421875				
1-binomialCDf(0,1,3,0.25)				
0.15625				

a
$$n = 3, p = 0.25$$
 and $q = 0.75$

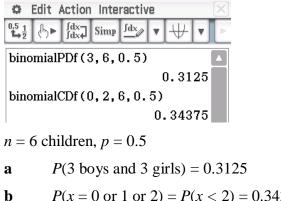
b
$$P(x=3) = 0.0156\ 25$$

c
$$P(x=0) = 0.421\ 875$$

d $P(\text{at least 2 flowers are red}) = 1 - P(x \le 1) = 0.156\ 25$

₹ 1.1 ►	*Unsaved 🗢	K 🛛 🗙
binomPdf $\left(4, \frac{2}{3}, \frac{2}{3}\right)$	2)	0.296296
1-binomCdf(4,	$\frac{2}{3}, 0, 0$	0.987654
1-binomCdf(4,	$\frac{2}{3}, 0, 2$	0.592593

$$n = 4, p = \frac{2}{3}$$

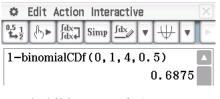

a
$$P(x=2) = 0.296$$

b
$$P(x \ge 1) = 1 - P(x = 0) = 0.988$$

c
$$P(x > 2) = 1 - P(x \le 2) = 0.593$$

₹ 1.1 ►	*Unsaved 🗢	K 🚺 🗙
binomPdf(6,0.5	5,3)	0.3125
binomCdf(6,0.5	5,0,2)	0.34375

ClassPad


b
$$P(x = 0 \text{ or } 1 \text{ or } 2) = P(x \le 2) = 0.34375$$

4

TI-Nspire CAS

ClassPad

n = 4 children, p = 0.5

$$P(x \ge 2) = 1 - P(x \le 1) = 0.6875$$

◆ 1.1 ▶ 🔓 *Unsaved 🗢	K 🛛 🗙
binomPdf(7,0.15,7)	0.000002
1-binomCdf(7,0.15,0,0)	0.679423

ClassPad

Edit Action Interactive	×
$\begin{array}{c c} 0.5 \\ \hline 1 \\ \hline 1 \\ \hline 2 \end{array} \xrightarrow{f} \left[\begin{array}{c} f \\ f \\ f \\ \mathbf{x} \\ \end{array} \right] \xrightarrow{f \\ f \\ \mathbf{x} \\ \mathbf{x} \\ \end{array} \xrightarrow{f \\ \mathbf{x} \\ \mathbf{x} \\ \mathbf{x} \\ \end{array} \xrightarrow{f \\ \mathbf{x} \\ $	-
binomialPDf(7,7,0.15)	
	1.70859375E-6
1-binomialPDf(0,7,0.15)	
	0.6794229117

n = 7, p = 0.15

a
$$P(x = 7) = 0.000\ 001\ 7$$

b
$$P(x \ge 1) = 1 - P(x = 0) = 0.679$$

6 TI-Nspire CAS

₹ 1.1 ►	*Unsaved 🗢	K 🛛 🗙
binomPdf(8,0.0	05,0)	0.66342
binomPdf(8,0.0	05,2)	0.051456
1-0.66342		0.33658

ClassPad

Edit Action Interactive	\times
$ \begin{array}{c} 0.5 \\ 1 \\ 1 \\ 1 \\ 2 \end{array} \end{array} \xrightarrow{fdx} Simp \begin{array}{c} fdx \\ \hline fdx \\ \hline \end{array} $	
binomialPDf(0,8,0.05)	
	0.6634204313
binomialPDf(2,8,0.05)	
	0.05145643234
1-0.6634204313	
	0.3365795687
1	

n = 8, p = 0.05

a
$$P(x=0) = 0.663$$

b
$$P(x=2) = 0.051$$

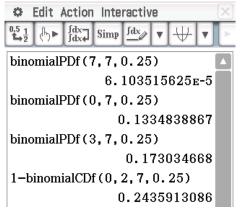
c
$$P(x \ge 1) = 1 - P(x = 0) = 0.337$$

a
$$(0.4)^2(0.6)^5 = 0.012$$

b
$$(0.4)^2 = 0.16$$

c

TI-Nspire CAS



	Ealt /	ACTION	Inte	ractiv	e			\ge
0,5 <u>1</u> 1⇒2	₽►	∫dx ∫dx₽	Simp	<u>fdx</u>	Ŧ	₩	Ŧ	Þ
1-b	inomi	ialCD	f(0,	1,7,	0.	4)		
				0	. 84	4136	96	

$$n = 7, p = 0.4, P(x \ge 2) = 1 - P(x \le 1) = 0.84$$

₹ 1.1 ►	*Unsaved 🗢	K 🛛 🕹	X
binomPdf(7,0.25,	7)	0.000061	
binomPdf(7,0.25,	o)	0.133484	
binomPdf(7,0.25,	3)	0.173035	
1-binomCdf(7,0)	25,0,2)	0.243591	

ClassPad

n = 7, p = 0.25

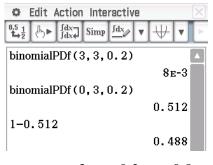
a
$$P(x=7) = 0.000\ 062$$

b
$$P(x=0) = 0.133$$

c
$$P(x=3) = 0.173$$

d $P(x \ge 3) = 1 - P(x \le 2) = 0.243$

ClassPad


C Edit Action Interactive	X
	P.
1-binomialCDf(0,5,8,0.85)	
	0.8947872258

n = 8, p = 0.85

 $P(x \ge 6) = 1 - P(x \le 5) = 0.895$

10 TI-Nspire CAS

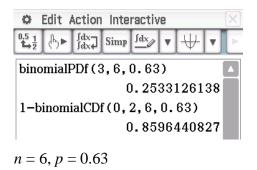
◀ 1.1 ▶	*Unsaved 🗢	K 🛛 🗙
binomPdf(3,0.2,	3)	0.008
binomPdf(3,0.2,	o)	0.512
1-0.512		0.488

- **a** n = 3, p = 0.2, q = 0.8
- **b** P(x=3) = 0.008
- c P(x=0) = 0.512
- **d** $P(x \ge 1) = 1 P(x = 0) = 0.488$

Reasoning and communication

11

TI-Nspire CAS


₹ 1.1 ►	*Unsaved ⇔	K <mark>.</mark> 🗙
1-binomCdf(7,0.2	15,0,1)	0.555054
$\operatorname{solve}\left((0.75)^n = \frac{1}{3}\right)$	72)	<i>n</i> =3.81884

Edit Action Interactive
Edit Action Interactive

$$f_{4x}^{5} = f_{4x}^{5} = f_{4x}^{6} = \frac{1}{5} = \frac{1}{5}$$

 0.5550537109
 0.5550537109
 0.5550537109
 0.5550537109
 0.5550537109
 0.5550537109
 $p = \frac{1}{4}$
a $n = 7, P(X \ge 2) = 1 - P(X \le 1) = 0.555$
b $n = ?, P(X \ge 1) > \frac{2}{3}$
 $P(X \ge 1) = 1 - P(x = 0) > \frac{2}{3}$
i.e. $P(x = 0) < \frac{1}{3}$
 $\Rightarrow {n \choose 0} {(\frac{1}{4})^{0}} {(\frac{3}{4})^{n}} < \frac{1}{3}$
 $\Rightarrow {(\frac{3}{4})^{n}} < \frac{1}{3}$
 $n = 4$

12

< <u>1.1</u> ►	*Unsaved 🗢	· (<mark>1</mark> 🗙
binomPdf(6,0.	63,3)	0.253313
1-binomCdf(6	,0.63,0,2)	0.859644

a
$$P(x=3) = 0.253$$

b
$$P(x \ge 3) = 1 - P(x \le 2) = 0.860$$

< <u>1.1</u> ▶	*Unsaved 🗢	(]	×
1500·0.68→µ		1020.	
√1500·0.68·0.32 -	→σ	18.0665	
μ-2· σ		983.867	
μ+2· σ		1056.13	
binomCdf(1500,0.6	8,984,1056)	0.956695	

ClassPad

Edit Action Interactive	\mathbf{X}
$ \stackrel{0.5}{\clubsuit_2} \stackrel{1}{\clubsuit} \stackrel{\text{fdx}}{J_{\text{dx}}} \operatorname{Simp} \stackrel{\text{fdx}}{\checkmark} \checkmark \qquad \qquad$	Þ
1500×0.68⇒µ	
1020	
√1500×0.68×0.32⇒σ	
18.06654367	
μ-2σ	
983.8669127	
μ+2σ	
1056.133087	
binomialCDf (984, 1056, 1500, 🕨	
0.9566948303	

n = 1500, p = 0.68

 $\mu = np = 1500 \times 0.68 = 1020$

 $\sigma = \sqrt{npq} = \sqrt{1500 \times 0.68 \times 0.32} = 18.066...$

 $2\sigma\approx 36.133...$

 $\mu+2\sigma=1056,\,\mu-2\sigma=984$

There is a 95% chance that between 984 and 1056 students will attend a government school.

14

TI-Nspire CAS

ClassPad

0	Edit <i>i</i>	Action	Inte	ractiv	e			×
$0.5 \frac{1}{2}$	₼►	∫dx ∫dx↓	Simp	<u>fdx</u>	Ŧ	₩	T	Þ
bino	binomialPDf(6,6,0.8)							
				I	0.3	2621	.44	
n =	6, p	= 0.	8, P	(<i>x</i> =	6)	= 0	.262	2

15

TI-Nspire CAS

₹ 1.1 ►	*Unsaved 🗢	(<mark>1</mark> 🗙
binomCdf(10	,0.4,0,4)	0.633103

ClassPad

0	Edit /	Action	Inte	ractiv	е			\times
$\xrightarrow{0.5}{1}$	৻৸►	∫dx ∫dx↓	Simp	<u>fdx</u>	Ŧ	₩	Ŧ	P.
binomialCDf(0,4,10,0.4)								
0.6331032576								

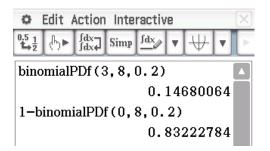
 $n = 10, p = 0.4, P(x < 5) = P(x \le 4) = 0.633$

ClassPad

🗢 Edit Action Interactive						X		
$0.5 \xrightarrow{1}{1}$	৻৸►	∫dx ∫dx↓	Simp	<u>fdx</u>	Ŧ	₩	Ŧ	Þ
binomialPDf (4, 4, 0.15)								
5.0625E-4								

$$n = 4, p = 0.15, P(x = 4) = 0.0005$$

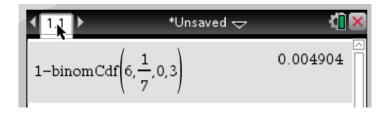
© Cengage Learning Australia 2014 ISBN 9780170254663

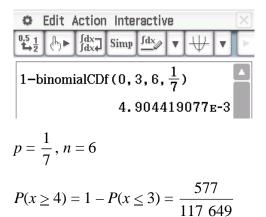

16

 ◆ 1.1 ▶ *Unsaved – 	7 🚺 🗙
binomPdf(10,0.1,2)	0.19371
1-binomCdf(10,0.1,0,0)	0.651322
$solve((0.9)^n=0.3,n)$	n=11.4272

ClassPad

C Edit Action Interactive Ŧ binomialPDf(2,10,0.1) 0.1937102445 1-binomialPDf(0,10,0.1) 0.6513215599 solve((0.9)^n=0.3,n) n=11.42717266p = 0.1*n* = 10 a P(x=2) = 0.194i P(x > 1) = 1 - P(x = 0) = 0.651ii b *n* = ? $P(x \ge 1) > 0.7$ 1 - P(x = 0) > 0.7P(x = 0) < 0.3 ${}^{n}C_{0}(0.1)^{0}(0.9)^{n} < 0.3$ i.e. $(0.9)^n < 0.3$ $n \log_e (0.9) < \log_e (0.3)$ [Note: $\log_e (0.9) < 0$] $n > \frac{\log_e(0.3)}{\log_e(0.9)} = 11.42$ *n* = 12

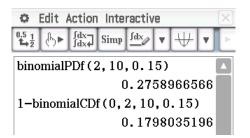

√ 1.1 ►	*Unsaved 🗢	(<mark>1</mark> 🗙
hinomPdf(8,0.2	,3)	0.146801
1-binomCdf(8,	0.2,0,0)	0.832228



$$p = 0.2, n = 8$$

a
$$P(x=3) = 0.147$$

b
$$P(x \ge 1) = 1 - P(x = 0) = 0.832$$



▲ 1.1 ▶	*Unsaved 🗢 🛛 🕻	X
binomPdf(6,0.3,0)	0.117649	
1-0.117649	0.882351	
$solve((0.7)^n=0.2,n)$) n=4.51234	

© Edit Action	Interactive 🛛					
$\stackrel{0.5}{\clubsuit}_{2}^{1} \qquad \qquad$	Simp fdx					
binomialPDf (0	1, 6, 0. 3)					
	0.117649					
1-0.117649	0.000051					
solve((0.7)^	0.882351 n=0.2.n)					
50110 ((011))	{n=4.512338026}					
p = 0.3						
a	<i>n</i> = 6					
i	P(x = 0) = 0.1176					
ii						
b	<i>n</i> = ?					
	$P(x \ge 1) > 0.8$					
	1 - P(x = 0) > 0.8					
	P(x = 0) < 0.2					
	${}^{n}C_{0}(0.7)^{n}(0.3)^{0} < 0.2$					
	i.e. $(0.7)^n < 0.2$					
	$n \log_e (0.7) < \log_e (0.2)$					
	[Note: $\log_e (0.7) < 0$]					
	$n > \frac{\log_e(0.2)}{\log_e(0.7)} = 4.51$					
	<i>n</i> = 5					

↓ 1.1 ▶	*Unsaved	 ✓ ✓
binomPdf(10,0	. 15, 2)	0.275897
(0.15) ³		0.003375
1-binomCdf(10	0,0.15,0,2)	0.179804
,	,	

$$n = 10, p = 0.15$$

a
$$P(x=2) = 0.276$$

- **b** This is not binomial, $P(\text{first 3 defective}) = (0.15)^3 = 0.003375$
- c $P(x \ge 3) = 1 P(x \le 2) = 0.18$

22

ClassPad

0	Edit <i>i</i>	Action	Inte	ractiv	/e		X
$0.5 \pm \frac{1}{2}$	₼►	∫dx ∫dx₽	Simp	<u>fdx</u>	Ŧ	₩	T
1-b	inom	ialCD	f(0,	7,10	,0	.8)	
			(.67	779	9952	64
n = 1	10, p	= 0.	8				

 $P(x \ge 8) = 1 - P(x \le 7) = 0.678$

41

Chapter 5 Review

Multiple choice

1	В	As there is either a six or not a six. Two possible outcomes.
2	С	As $\sigma = \sqrt{pq} = \sqrt{0.2 \times 0.8} = \sqrt{0.16} = 0.4$.
3	D	'the number of cards drawn from a well shuffled deck of playing cards before
		an ace occurs.' as the sequence is q, q, q,,p
4	Е	$P(X = 3) = (0.6)^3(0.4) = 0.0864$
5	А	'the number of hearts that occur when 7 cards are drawn with replacement from a
		well-shuffled deck of 52 cards' as number of hearts are successes and not hearts
		are failures.
6	Е	The binomial distribution with $n = 12$ and $p = 0.25$.
7	В	$n = 7, p = \frac{5}{12}, P(x \le 1) = 0.1379$
8	D	$n = 20, p = 0.9, P(x \ge 18) = 1 - P(x \le 17) = 0.677$
9	D	$\mu = np = 20 \times 0.7 = 14$

Short answer

- **10 a** No as there is more than one suit. Binomial needs success and failure two options.
 - **b** No, haven't got two alternatives only.
 - **c** Yes, as orange or not orange only.
 - **d** No, there are up to 15 possible tails.
 - e Yes, as a king or not a king.
 - **f** No, as there are up to 3 blue marbles.
 - **g** Yes, as either left-handed or not.

11
$$p = \frac{8}{45}$$

12
$$p = \frac{1}{6}, \sigma^2 = npq = 1 \times \frac{1}{6} \times \frac{5}{6} = \frac{5}{36}$$

13
$$p = \frac{1}{3}$$

$$P(x=5) = \left(\frac{2}{3}\right)^4 \times \frac{1}{3} = \frac{16}{243}$$

14
$$p = 0.3$$

a $P(X = 3) = (0.7)^3(0.3) = 0.1029$
b $P(X \le 5) = (0.3) + (0.7)^1(0.3) + (0.7)^2(0.3) + (0.7)^3(0.3) + (0.7)^4(0.3) + (0.7)^5(0.3)$
 $= 0.3 + 0.3 \times 0.7(1 + 0.7 + 0.7^2 + ... + 0.7^4)$
 $= 0.8824$

c Assuming she keeps going round and round until she gets a win,

$$E(X) = \frac{1-p}{p} = \frac{1-0.3}{0.3} = 2.333...$$

15 *p* = 0.68

a $P(Y=3) = (0.32)^3 (0.68) = 0.0223$

b
$$P(2 \le Y \le 9) = (0.32)^2 (0.68) + (0.32)^3 (0.68) + (0.32)^4 (0.68) + (0.32)^5 (0.68) + (0.32)^6 (0.68) + (0.32)^7 (0.68) + (0.32)^8 (0.68) + (0.32)^9 (0.68)$$

$$= (0.32)^{2} (0.68)[1 + (0.32) + (0.32)^{2} + (0.32)^{3} + (0.32)^{4} + (0.32)^{5} + (0.32)^{6} + (0.32)^{7}]$$

= 0.1024

16 a Yes, there are two alternatives, prime or not prime.

- **b** No, the outcomes vary.
- **c** Yes, binomial. The card is either a spade or it is not.
- **d** No, not binomial. The number of tosses required can vary.
- e Yes, binomial. The die shows either an even number or not an even number.
- **f** Without replacement means the probability of obtaining green changes, so not binomial.
- **g** Recording heads may vary. Not binomial.

17 a
$$\binom{5}{2}(0.4)^2(0.6)^3 = 0.3456$$

b $\binom{10}{7}(0.43)^7(0.57)^3 = 0.604$
c $\binom{8}{2}\left(\frac{2}{3}\right)^2\left(\frac{1}{3}\right)^6 = 0.001\ 71$
18 a $n = 8$
b $p = 0.45$

b
$$p = 0.4$$

C	x	0	1	2	3	4	5	6	7	8
t	P(X=x)	0.0084	0.0548	0.1569	0.2568	0.2627	0.1719	0.0703	0.0164	0.0017

19
$$n = 8, p = 0.35$$

a $P(X = 7) = 0.0033$
b $P(x \ge 2) = 1 - P(x \le 1) = 0.831$
c $P(X > 4) = 1 - P(x \le 4) = 0.106$

20
$$n = 5, p = \frac{12}{52}$$

$$P(X = 2) = 0.242$$

21 $n = 20, p = 0.68$

a
$$P(X = 12) = 0.1354$$

b
$$P(X \ge 7) = 1 - P(x \le 6) = 0.9994$$

c
$$P(X \le 9) = 0.0279$$

22
$$n = 9, p = 0.6$$

a
$$P(x=3) = 0.0743$$

b
$$P(x=6) = 0.2508$$

c
$$P(X \ge 2) = 1 - P(x \le 1) = 0.9962$$

23
$$n = 3, p = 0.7$$

 $P(X \ge 2) = 1 - P(x \le 1) = 0.784$

*Unsaved 🗢	
3,5)	0.20613
4 5,7)	0.144267
75,0,5)	0.000034
,0.6,0,3)	0.984733
3,3,9)	0.916555
	*Unsaved → 3,5) 45,7) 75,0,5) ,0.6,0,3) 3,3,9)

c Edit Action Interactive
binomialPDf (5, 15, 0.3)
0.206130381
binomialPDf (7, 19, 0.45)
0.1442669967
binomialCDf (0, 5, 18, 0.75)
3.42457206E-5
1-binomialCDf (0, 3, 12, 0.6)
0.9847327334
binomialCDf (3, 9, 20, 0.3)
0.9165549704
a
$$n = 15$$
 and $p = 0.3$
 $P(x = 5) = 0.2061$

b
$$n = 19$$
 and $p = 0.45$

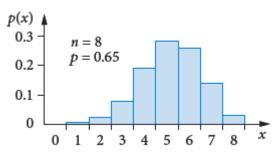
$$P(x = 7) = 0.1442$$

c
$$n = 18 \text{ and } p = 0.75$$

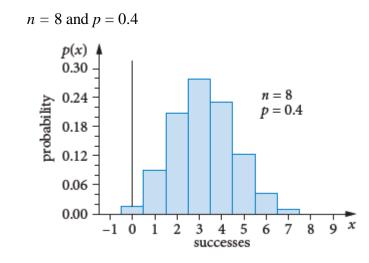
 $P(x < 6) = P(x \le 5) = 0.000\ 034...$

d
$$n = 12 \text{ and } p = 0.6$$

 $P(x \ge 4) = 1 - P(x \le 3) = 0.9847$


e
$$n = 20$$
 and $p = 0.3$
 $P(3 \le x \le 9) = P(x \le 9) - P(x \le 2) = 0.9166$

25 n = 12 and p = 0.5 $P(3 < x < 7) = P(x \le 6) - P(x \le 3) = 0.5398$


26
$$n = 8$$
 and $p = 0.65$

27

a

Slightly skewed to the right. i.e., slightly negatively skewed.

b The most likely number of successes is 3.

28 a
$$n = 8$$
 and $p = 0.2$
 $\mu = np = 8 \times 0.2 = 1.6$
 $\sigma = \sqrt{npq} = \sqrt{8 \times 0.2 \times 0.8} = \sqrt{1.28} = 1.131$
b $n = 10$ and $p = 0.7$
 $\mu = np = 10 \times 0.7 = 7$
 $\sigma = \sqrt{npq} = \sqrt{10 \times 0.7 \times 0.3} = \sqrt{2.1} = 1.45$
c $n = 15$ and $p = 0.55$
 $\mu = np = 15 \times 0.55 = 8.25$
 $\sigma = \sqrt{npq} = \sqrt{15 \times 0.55 \times 0.45} = \sqrt{3.7125} = 1.93$
29 $n = 20$ and $p = 0.15$
a $P(x = 7) = 0.016$
b $P(X \ge 7) = 1 - P(x \le 6) = 0.0219$

c
$$P(X \ge 5) = 1 - P(x \le 4) = 0.1702$$

30
$$n = 12$$
 and $p = 0.28$

a
$$(0.28)^2 \times (0.72)^{10} = 0.002\ 935$$

b
$$P(X=2) = 0.1937$$

c
$$P(X \ge 2) = 1 - P(x \le 1) = 0.8900$$

Application

31 n = 10 and p = 0.8a P(X = 10) = 0.1074b P(X = 9) = 0.2684c $P(X \ge 7) = 1 - P(x \le 6) = 0.8791$ 32 n = 15 and p = 0.85a $P(X = 15) = (0.85)^{15} = 0.087354$ b Use q = 0.15 as success

 $P(\text{at least 2 have no immunity to the disease}) = P(X \ge 2) = 1 - P(X \le 1) = 0.6814$

c Use q = 0.15 as success $P(X < 4) = P(X \le 3) = 0.8227$

- **33** n = 15 and p = 0.05 (defective)
 - **a** P(all are operative) = P(X = 0) = 0.4633
 - **b** P(X=2) = 0.1348
 - c $P(X \ge 2) = 1 P(x \le 1) = 0.171$
 - **d** $P(X \le 2) = 0.9638$
- **34** n = 18 and p = 0.3

 $P(X \le 4) = 0.3327$

35 n = 25 and p = 0.18

a
$$\mu = np = 25 \times 0.18 = 4.5$$

4 or 5 are expected to be iron deficient.

b
$$\sigma = \sqrt{npq} = \sqrt{25 \times 0.18 \times 0.82} = 1.920\ 94$$

 $\mu + 2\sigma = 4.5 + 2(1.92) = 8.342$
 $\mu + 2\sigma = 4.5 - 2(1.92) = 0.658$
 $P(0.658 < x < 8.342)$
 $= P(0 < x \le 8)$
 $= P(X \le 8) - P(X = 0)$
 $= 0.9678$

c There is about a 97% chance that from 1 to 8 women in the study group will suffer from iron deficiency.

36
$$\mu = 12 = np, \ \sigma = 3 = \sqrt{npq}$$

 $9 = 12q$
 $q = 0.75, \ p = 0.25$
 $12 = n(0.25)$
 $n = 48$
 $n = 48, \ p = 0.25, \ P(X = 9) = 0.085 \ 78$

37

$$p = 0.18$$
 (objects to fluoridisation)

a
$$n = 10$$

i $P(X = 0) = 0.1374$
ii $P(X \ge 2) = 1 - P(x \le 1) = 0.5608$
b $n = ?$
 $P(x \ge 1) > 0.9$
 $1 - P(x = 0) > 0.9$
 $P(x = 0) < 0.1$
 ${}^{n}C_{0}(0.18)^{0}(0.82)^{n} < 0.1$
i.e. $(0.82)^{n} < 0.1$
 $n \log_{e} (0.82) < \log_{e} (0.1)$
[Note: $\log_{e} (0.82) < 0$]
 $n > \frac{\log_{e} (0.1)}{\log_{e} (0.82)} = 11.6$
 $n = 12$